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ABSTRACT

The statistical precision of a chord method for estimating dimension from
a correlation integral is derived. The optimal chord length is determined, and
a comparison is made to other estimate  The simple chord estimator is only
25% less precise than the optimal estima ur which uses the full resolution and
full range of the correlation integral. I'he analytic calculations are based on the
hypothesis that all pairwise distances betw sen the points in the embedding space
are statistically independent. The adequacy of this approximation is assessed
numerically, and a surprising result is observed in which dimension estimators
can be anomalously precise for sets with reasonably uniform (noufractal) distri-
hutions.

Running title: a chord estimator of correlation dimension
Keywords: correlation dimension, statistical error

PACS: 02.60.4y, 05.45.4+h

1. Introduction

Estimating the fractal dimension of a strange attractor from a finite sample of points is
a problem that has attracted considerable interest over the Tast decade, particnlarly in the
context of time series analysis.t Tnsofar as dimension can be aceurately computed, it provides
a very useful measure of the underlying complexity of the dynamies by connting the number
Gf “active™ degrees of freedom.

A standard approach for estimating the dimension involves lirst reconstructing the phase
space by embedding the data in a higher dimensional space; this generally involves the use
of time delay coordinates [Packard ot al., 1980} or their linear combinations [Broomhead

'See Tong [1990], Grassherger et al. [1991], and Crsdagli of al, [1992] for recent reviews of Lime series in
general, and Theiler [1990n] for o review of dimension estimation in partienlar.



and King, 1987]. The issues involved in making a good embedding are beyond the scope of
this brief article; sce Sauer et al. [1991], Casdagli ef al. [1992b], and Gibson et al. [1992a]
for recent expositions. For our purposes, it will be assumed that we have a sample of N
independent data points in an m dimensional phase space: {r,,...,r,} € R™.

One can define a pointwise mass function B(x; N,r) which counts the fraction of points
(not including the reference point x) that are witnin a distance r of the point . The scaling of
B(x; N,r) with r for large N and small r defines a pointwise dimension: B(x; N,r) ~ Ri(®),

Averaging the pointwise mass function over all the points = leads to the correlation
integral of Grassberger and Procaccia [1983] and Takens [1983). Here C(N,r) = (B(x; N,r)),
is the fraction of distances smaller than r between all pairs of points in an n point sample.?
If, in the limit of large N and small r, the correlation integral scales as r*, then the exponent
v defines the correlation dimension. Formally,

) . logC(N,r)
v = lim lim ————
r—=O0N—-x l()gr

(1)

In practice, » is usually estimated as the slope in a log-log plot of C(N,r) versus r,
restricted Lo some range of » over which “good scaling” is observed. While there is still a fair
bit of art to choosing this xcaling range, the actual fit of the slope is fairly straightforward.
It is the fitting of vhis slope that will be addressed here.

One very conmmon approach is to estimate the slope by taking a least squares fit through
the points along some segments on the C(N,r) curve. This is a reasonable approach, as long
as it is done properly [Denker aud Keller, 1986; Cutler, 1991], but the method is often abused.
Some authors are led to believe that it is optimal because least squares was employed. Even
more dangerous is a tendency to associate the standard errvor of the unweighted least-squares
fit with the “error bar” on the dimension itself; the two are utterly different.

1.1 Takens Estimator

Takens [1985] proposed a “hest™ estimator for # directly from the set of pairwise distances.
(Smith [1992a] pointed out that the same estimator was derived much carlier in another
context, before heing “rediscovered™ by ‘Takens, though Takens was the first to apply it
to the problen: of estimating the dimension of a chaotic attractor.) The Takens estimator
requires the choice of a single free parameter, 12, the upper cutoff distance, All pairwise
distances larger than 12, are discarded, and all distances - which arve less than I, are averaged
according to

- (2)
(log(r/ 1¢,))

The Takens estimator is optimal in the situation that all distauces ave independent (which is

not strictly true, but is often a good hypothesis for simall distances  more about this later),

Eflicient implementations are desepibed by ‘Theiter [F987] and Grassherger [1990].
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and the correlation integral is strictly proportional to r. 3 See Cawley and Licht [1986] for
some numcrical experiments with this estimator.
An cquivalent form of the Takens estimator, in terms of the correlation integral, is given
by
_ C(R)
"= TRro (Y 1] dr
b [C(r)/r] dr

(3)

1.2 Chord Estimator

Arguably the casiest way to estimate a slope of the correlation integral to choose two points
on the curve, at say R, and R,, and measure the slope of the chord that is drawn through
those two points. That is,

_ log C(N, R,) = log C(N, )
i/ =
' log T, — log It

(4)

This may seem terribly inefficient, because so much information is thrown away, but for a
well chosen chord, the statistical error is only be 25% worse than for the optimal Takens
estimator, which uses all the information in the C(N, r) functicn.

In choosing the optimal chord. two effects are traded off against cach other. First, the
“length™ of the chord should be as large as possible, so that the slope is less sensitive to
small fluctuations in the endpoints. Second, the chord should not be so long as to reach too
far into the small distances, where the fluctuations of the endpoint is particularly large. In
what follows, the optimal choice of chord will be derived; the rule for optimal choice can be
expressed independently of # and of the upper cutofl £,

Because Fq. (1) provides a simple and explicit expression for estimated dimension, a
wamber of anthors have used it for more general ealculation:s which attempt to estimate
the number of data points required to achieve good dimension caleulations [Nerenberg and
Fissex, 1990; Fssex and Nerenberg, 1992; Majski and Lookman, 1992].

2. Derivation of Statistical Error and Optimal Chord

Suppose the correlation integral is evaluated at two distances, 12, and 18, < R,. Define
R = It,/1t, > 1. Let N, and A, be the number of distanees less than 12, and It respectively.
Finally define n, o N, = AqL The chord estimate of dimension is given by

M!,,\-/’,, — Iug.\‘f. lmr,(./\‘/’l +n,,) - lug/\‘/] (%)
gl ~log Ity log R !

1’

Now, Ny and A, are not statistically independent, but A and n,, - N, = N, are. Further,
since the random variables A and n, have a poisson distribution, we can write the varianees

FThis strict proportionality casn fail beenuse of noise in the datn, boundaey elfeets, or “lacunnrity.” "T'he
Last of thewe has heen deseribed by a ninber of authors; o recent and comprehensive trentient of the issge
ns it applies to donension estination s provided by Smith [L992¢],



Var(N;) = M, and Var(n,) = n,. Then, we can compute

var) = (22 varvy + (22) v 6
wlv) = (357 ) Var) + (5= ) Var(n). (6)
In particular,
dv 1 | 1
ON; = logR [M +n, Fl] (7)
Jdv | 1
on, - logR [Nl + n.o] ) (8)

Thus, we can write

l l Ik l 4
Var(v) = (log R)? ([Nl +n, m] N+ [JV| + n.‘,] no) ' ®)

Let us introduce the parameter O delined by

o= CN 1)

= TN = Nel M= (o] Bu (10)

Then, use Ny = N, /0 and n, = N,(0 — 1)/0, as well as viog R = log © to rewrite Eq. (9).

. l 01
Var(v)/v* = N, L(log ('))2] l ()

This expression is independent of v and of If,,, and is minimized with © approximately eqnal
to 1.921554, giving a relative statistical error for v as about 1.25/VN,. By contrast, the
‘I'akens best estimator (which nses the correlation integral at oll distances less than the upper
cutoll /2, instead of just the single distanee 1) has a relative error of l.()/\/.x/:.
Having chosen an upper scale I8, the optimal choice of lower scile 18y is given by that
Iy for which
CH)/CUR) = O 22 5. (12)

Using this “rale of hve™ it s pessible to very rapidly estimate a fractal dimension which is
only slightly less efficient than optimal,

Note that there is no penalty for large dimension. This analysis also suggests that the
optimal choive of I, is as Large as possible. This is teae from the point of view of statistical
precision, but if systematic ercors are included, smaller I, are generally desived. I lacunarity
is taken into account, then there wan advantage to larger R.



3. Comparison to Other Estimators

The Takens method uses all distances less than /¢, whereas the chord method uses C(N,r) at
only two values of r. Qualitatively spcaking, there are two different sources of the increased
imprecison in the chord method. One results from ignoring distances below the lower cutoff
R,, and the other results from ignoring distances between R, and R,. It is possible to
assess the relative contributions of these two effects by considering two other estimators.
The f{irst. was suggested by Ellner [1988] (see also Olofsen et al. [1992] for an extension to
multiple embedding dimensions) who derived the maximum likelihood estimator that uses
all distances between it and R,. Here,

N -1
7=
78 log( R/ Ro) + (log(r/ o))
where the average is over all M, — N distances between Ry and R,. Note that as R, — 0,

N[N, — 0 and the original Takens estimator is retrieved. In terms of the correlation
integral, this estimator can be written

(13)

5 _ CUL) - C)
feelC(r)/r] dr’

Ellner [1988] has shown that the variance of this estimator is given by

Var(v)/v? = /1 ‘%I/Ru)"]
0
1

(14)

(15)
(16)

Klf.—, [(—)

In particular, at © = 5, the relative statistical error is 1.12/ VA,

A second alternative estimator was suggested by Smith [1992D)]; it is the maximum likeli-
hood estimator based on K 42 distances equally spaced on a logarithmic scale: Ry = R,/RK
(note that the special case N = 018 the chord estimator):

lug[( '([f.,) + CUR) A+ CORE)] - log[C(Iy) - - O 4))
log'R

(17)

It is interesting (o consider the W o limit for this estiinator, because  in opposition to
Ellner's estimator the estimator does nof throw away information m C(N,r) for r < It}
but does throw away information in C'(N.r) for distances between B, and 17, Ellner's
catinsator arguably makes more sense, heeanse there may be good reason to throw away
the o < I information (noise may have corrupted the small distance seales), whereas the
only case for ignoring C(N,r) at the intermediate distance scales is case ol implementation
(though this is not a trivial consideration). Smith's estimator is illustrative becanse it does
well just wher Ellner’s does poorly (at small ©), and vice versa (for large ©).

[
')



For large I\, it can be shown that

(@ —1)

Var(v)/v? = G(log@)’]/\f

(18)

In the limit © — 1, this approaches Var(v)/v? = 1/A,, which is the same as the Takens
estimator. In fact, in the © — 1 limit, the A" -+ oo version of Eq. (17) is exactly equivalent
to the Takens estimator. (II' ® — 1 and &' — oo in such a way that K lcg© is fixed, then
Ellner’s estimator is approached.)

We should remark that the estimator in Eq. (17) is not Smith’s only cstimator. He has
also introduced modifications to account for noise [Smith, 1992b] and lacunarity [Smith,
1992¢].

4. The Independent Distance Hypothesis

All of the estimators described so far were derived to be optimal under the assumption that
all distances less than R, are independent. Altiough this is basically valid for pointwise
dimension estimators, it is not true for the correlation dimension. One possibility is to ran-
domly choose N/2 pairs using all N data points; as long as the data points are independent,
so will the pairs be. This may be philosophically correct (PC), but it is very ineflicient
because it ignores most of the short distances. If there are N independent data points, each
with m independent coordinates, one might expect that the O(mN) shortest distances are
“nearly” ind-nendent; though they undoubtedly will not be strictly independent since ihey
will be constrained, for instance, by various triangle inequalities.® Smith [1992b) provies
both an informal [Smith, 1992b] and a more formal [Smith, 1992¢] argument for the near-
independence of the shortest distances.

In Fig. 2, we plot statistical error in a chord estimator of dimension for data uniformly
distributed on the wnit segment. For small R,, we find that this error agrees with the
prediction of Eq. (11), which assumes that distances are independent. For larger R, however,
we find that the statistical error is larger than predicted by Eq. (11), ai least for smaller ©.,
(For larger O, the error is dominated by statistical error of ('(N, Ity), where 1) is small, so
distances less than Ity are nearly independent; thus Eq. (11) predicts error at large © well
even when I8, is large.) When I, is large enough that the independent distances hypothesis
leads to a poor approximation, the optimal © becomes larger than five,

1Computing n single pointwise dimension has the same problem: too many small distances are ighored,
Some have suggested computing a correltion dimension bused on distances from only n few references points,
but the case against this is presented in [Theiler 19949,

YAnother possibility involves consteueting a spanning tree, and computing distances only hetween points
tinked on the tree; this is a kind of compromine which sidesteps the triangle inequality constraints, and
sl provides mostly smnl! distances. But it would still be incorr=ct to consider those distances as truly
il|(||-|u'l|(|1'||1
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4.1 Anomalous Precision in Dimension Estimation

It was shown in [Theiler, 1990b] that except for very special cases, the precision with which
the correlation integral C'(N,r) is estimated scales as 1/\/1_\/' for sufficiently large N. It is
natural to assume that dimension estimates based on the correlation integral should similarly
scale. But some recent numerical observations suggests that the estimated dimension for
some attractors may have a precision which scales as 1/N, even though the correlation
integral itself is (true to theory) scaling as 1/v/N.

The effect is illustrated in Fig. 3. Two different data sets were generated, both randomly,
but according to different distributions. In Fig. 3(ab), the statistical error for the correlation
integral and the chord dimension are both shown as a functior of N for data produced by
a unit-variance gaussian random number generator. The correlation integral is evaluated
at R, = 0.1, and the chord dimension is estimated with © = 5. Although the error in the
correlation integral scales as 1/\/1\7, the error in the chord dimension appears to scale as
1/N.

That this is not a general property is shown in Fig. 3(cd). Here data was generated using
an iterated function system [Barnsley and Demko, 1985): 7,4, = (1/4)x, with probability
1/2; and 7,41 = (3/4)x, +(1/4) with probability 1/2. Finally, we take only every tenth point
(zy, 211, €ete.), so that the points are effectively independent. The data fills the unit segment
[0,1], but with a highly nonuniformi Cantor-set-like measure.® The correlation dimension
satisfies ¥ + (1/3)” = 4, for which v = 0.733644 is an approximate solution. Again the
correlation integral and chord dimension is estimated at R, = 0.1 and R; = R,/9, so that
(R./R)” = 5. What we sce in this case is that estimators for both the correlation integral
and the correlation dimension have errors that scale like l/\/TV-

This anomalously precise estimate of dimension for sets with smooth integer-dimensional
measures may account for the observation in [Theiler et al,, 1992 (Fig. 2a)] that the signif-
icance of a dimension-hased test for nonlinearity in a low-dimensional time series of length
N scales linecarly with N, In that case, the given time series is compeared surrogate data
sets which are linear correlated noise (surrogate data) with the same autocorrelation as the
original data. The significance is defined by the difference hetween the estimated dimension
for the real and the surrogate data, divided by the standard deviation of the the dimension
estimates for the many surrogate data sets, Since as we have seen, this standard deviation
scales as /N, this explaius why the significance increases so rapidiy for N.

Oue (still uninvestigated) nnplication of this anomalous scaling relates to the popular
and imereasingly contentious studies of data requirements. Attempts to estimate how much
data one needs to compute dimension to a pre-specified accuracy are often based on quanti-
fying the tradeofl between statisdcal ervor and boundary effeets, This obvionsly depends on
the nature of the nnderlying attractor, but if smooth nonfractal sets are used as “typical”

SThe wnit segment [0,1] has half of its measare conecentrated in the interval [0,1/4], and the other half in
[1/4.1]; ench of these two intervals has half of its ieasure concentrated in the first quarter of its length, and
the other half in the last three quarters; the measure in each of these four intervads is similarly partitioned,
and 8o on.

-1



examples, one may find that the statistical error is much smaller than actually occurs in the
truly typical cases, and one may therefore underestimate the amount of data that is really
required.

5. Reprise

Assuming the independent distances hypothesis, that all distances are known to full accuracy,
and that the correlation integral scales as a strict power law, then the most precise estimator
of the exponent of that power law ig given by Takens [1985]. By throwing away information in
the C(N,r) curve at distances less than a lower cutoff R, (as one might do if these distances
are contaminated by noise), the best estimator is given by Lllner [1988]. For very small
R, (large ©), not much information is lost by ignoring these small distances, but for large
R, = R,, the effect of a small lever-arm is evident, and the estimator has a large statistical
error.

If on the other hand one only knows the correlation integral C(N,r) at discrete values
of r that are equally spaced on a logarithmic scale, then the estimator of Smith [1992b] is
best. in the K" — oc limit, it keeps information that Ellner’s estimator discards, namely the
behavior of C'(N,7) in the small r limit. It also discards information that Ellner’s estimator
uses in the behavior of ('(N,r) for distances between R, and R,. This estimator works best
when Ry = R, (small @), because less information is lost.

The chord estimator is less precise than either Smith’s or Ellner’s estimator, because it
considers only two points, and ignores everything else. However, when those two points are
chosen so that the ratio of their correlation integrals is about five, then a very rapid estimate
of dimension is obtained which is only 25% less precise than the optimal Takens estimate
that uses the full resolution and full range of the correlation integral.

On the other hand, one does not expect the independeant distances hypothesis to be valid;
it is impossible to get O(N?) independent degrees of freedom from N points. Numnerical ex-
periments indicate that *his hypothesis is reasonable if only the smallest O(N) distances are
used. But for certain nonfractal attractors, we have observed that the precision of a dimen-
sion estimator scales as /N with the number of data points, as ¢f the independent distances
hypothesis were applicable. The authors are presently unable to explain this anomalous
cffect.

Acknowledgements

We are grateful to the Advanced Computing Laboratory at the Los Alamos National Labo-
ratory for computer resources nused to perform the numerical experiments shown here. Work
by JT was partially supported by a grant from the National Institute of Mental Health 1-
ROL-MHATIS 0] and was performed at Los Alamos under the auspices of the Department

of Energy. DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government.  Neither the United States Government nor any sgency thereof, nor any of their
employees, makes any warranty, cxpress or implied, or assumes any legal hability or resporsi.
bility for the accuracy. completeness, or usefuiness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to uny specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute ot amply its endorsement, recom-
mendation, or favoring by the United States (Goverament or any agency thereof. The views
and opinions of suthors expressed herein do not necesaarily state o1 reflect those of the

Tlritad Qlatas Flanesmmaat s ame: mammss ) NS



References

Barnsley, M. F. & Demko, S. [1985] “Iterated function systems and the global construction
of fractals,” Proc. R. Soc. Lond. A 399, 243.

Broomhead, D. S. & King, G. P. [1987] “Extracting qualitative dynamics from experimental
data,” Physica D 20, 217.

Casdagli, M., Des Jardins, D., Eubank, S., Farmer, J. D., Gibson, J., Hunter, N. & Theiler,
J. [1992] “Nonlinear modeling of chaotic time series: theory and applications,” in Applied
Chaos (Addison-Wesley) pp. 335-382.

Casdagli, M., Eubank, S., Farmer, J. D. & Gibson, J. [1991] “State space reconstruction in
the presence of noise,” Physica D 51, 52-98.

Cawley, R. & Licht, A. L. [1986] “Maximum likelihood method for evaluating correlation
dimension,” in The Physics of Phase Space, ed. Kim, Y. S. & Zachary, W. W, vol. 278 of
Lecture Notes in Physics (Springer-Verlag, Berlin) pp. 90-103.

Cutler, C. D. [1991] “Some results on the behavior and estimation of the fractal dimensions
of distributions on attractors,” J. Stat. Phys. 62, 651-708.

Denker, M. & Keller, G. {1986] “Rigorous statistical procedures for data from dynamical
systems,” J. Stat. Phys. 44, 67-93.

Ellner, S. [1988] “Estimating attractor dimensions from limited data: a new method, with
error estimates,” Phys. Left. A 133, 1238-133.

Essex, C. & Nerenberg, M. A. 1. {1991] “Comments on ‘Deterministic chaos: the science
and the fiction’ by D. Ruelle,” Proc. R. Soc. Lond. A 435, 287-292.

Gibson, J. F., Farnwer, J. D., Casdagli, M. & Eubank, S. [1992] “An analytic approach to
practical state space reconstruction,” Physica 1) 57,1 -30.

Grassherger, P. [1990] “An optimized box-assisted algorithm for fractal dimensions,” Phys.
Lett. A 148, 63 63,

Grassherger, P. & Procaceia, 1 [1983] “Measuring the strangeness of strange attractors,”
Physica D9, 189 208.

Grassherger, P., Schreiber, T & Schaffrath, C.[1991] “Non-lincar time sequence analysis,”
Int. J. Bif. Chaos 1, 521 H47.

Majski, W. & Lookman, 'T. [1992] “Data requirements for correlation dinension estimates,”
Preprint.

Nerenberg, N ALDH & Bssex, L [1990] “Correlation dimension and systematic geometric
effects,” Phys. Reoo A4 42, 7065 7071,



Olofsen, E., Degoede, J. & Heijungs, R. [1992] “A maximum likelihood approach to correla-
tion dimension and entropy estimation,” Bull. Math. Bio. 54, 45-58.

Packard, N. H., Crutchfield, J. P., Farmer, J. D. & Shaw, R. S. [1980] “Geometry from a
time series,” Phys. Rev. Lett. 45, 712-716.

Sauer, T., Yorke, J. A. & Casdagli, M. [1991] “Embedology,” J. Stat. Phys. 65, 579-616.

Smith, R. L. [1992a] “Comment: Relation between statistics and chaos,” Stat. Sci. 7, 109-
113.

Smith, R. L. {1992b] “Estimating dimension in noisy chaotic time series,” J. R. Stat. Soc. B
54, 329-352.

Smith, R. L. [1992¢] “Optimal estimation of fractal dimension,” in Nonlinear Modeling and
Forecasting, ed. Casdagli, M. & Eubank, S., vol. XII of SFI Studies in the Sciences of
Complexity (Addison-Wesley) pp. 115-136.

Takens, F. [1983] “Invariants rclated to dimension and entropy,” in Atas do 13°, Colégkio
Brasiliero de Matematica (Rio de Janeiro).

Takens, F. [1985] “On the numerical determination of the dimens‘on of an attractor,” in
Dvnamical Systems and Bifurcations, Groningen, 1984, ed. Braaksma, B. L.. J., Broer, H. W.
& Takens, F., vol. 1125 of Lecture Notes in Mathematics (Springer- Verlag, Berlin) pp. 99-106.

Theiler, J. {1987] “Efficient algorithm for estimating the correlation dimension from a set of
discrete points,” Phys. fev. A 36, 4456-4462.

Theiler, J. [1990a] “Estimating fractal dimension,” J. Opt. Soc. Am. A 7, 1055-1073.

Theiler, J. [1990b] “Statistical precision of dimension estimators,” Phys. Rev. A 41, 3038~
3051,

Theiler, J., Galdrikian, B., Longtin, A, Eubank, S. & Farmer, J. D. [1992] “Using surrogate
data to detect nonlinearity in tine series,” in Nonlincar Modeling ai.d Forecasting, ed.
Casdagli, M. & BEubank, S., vol. XIT of SF'I Studies in the Sciences of Complexity (Addison-
Wesley) pp. 163 1388.

Tong, H. [1590] Non-lincar Time Scries: A Dynamical System Approach (Clarendon Press
Y Y ! ’

Oxford).

0



Figure captions

Figure 1. Coeflicient of relative statistical error, defined by \/N,Var(v)/v, for four estima-
tors as a function of @ = C(N, R,)/C(N,Ry) = (R,/ Ry)”. The relative statistical error itself
is a factor of 1/v/N, smaller than these curves. The solid line is the chord estimator, which
estimates dimension from the C(N,r: curve at only two values of r. The optimum chord
estimator is given at © = 5. At this value, it is 25% worse than the Takens estimator {dashed
line), and alout 11% worse than the estimators of Ellner (dotted line) and Smith (dashed
dotted line). Note that the minimum is quite shallow; for 1.35 < © < 75 the statistical error
is still no more than twice the optimal Takens error.

Figure 2. Theoretical (dashed line) and numerically estimated (solid line) statistical error
for the chord estimator using data generated randomly and uniformly on the unit segment.
In all cases N = 300 points were uscd; the three curves correspond (from top to bottom)
to R, = 0.02,0.10,0.50. The agreement with theory breaks down for large R,, presumably
because the approximation of independent distances fails.

Figure 3. Anomalous scaling of statistical error as a function of the number N of points
in the data set. Panels (a,c) are for the correlation integral itself, evaluated at R, = 0.1
for (a) unit variance gaussian noise, and (b) random data with a highly nonuniform Cantor-
like distribution. In agreement with theory, both scale as 1/v/N. Panels (b,d) are for the
estimate of chord dimension using X, = 0.1 and © = 5. HHere, we observe the anomalous
/N scaling for the gaussian distribution, while we see the expected 1/v/N scaling for the
(‘antor distribution.
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Figure 2: Theiler and Lookman
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